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TECHNICAL NOTE 3389

AXTALT.Y SYMMETRIC SHAPES WITH MINIMUM WAVE DRAG

By Max. A. Heaslet and Franklyn B. Fuller
SUMMARY

The external wave drag of bodies of revolution moving &t supersonic
speeds can be expressed either in terms of the geometry of the body, or
in terms of the body-simulating axlal source distribution. For purposes
of deriving optimum bodies under various given conditions, it is found
that the second of the methods mentioned is the more tractable. By use
of & quasi-cylindrical theory, that is, the boundary conditions are applied
on the surface of a cylinder rather than on the body itself, the varia-
tional problems of the optimum bodies having prescribed volume or caliber
ere solved. The streamwise variations of cross~sectional ares and drags
of the bodies are exhibited, and some numerical results are given. The
solutions are found to depend upon a single parsmeter involving Mach
number and the radius-length ratio of the given cylinder. Variation of
this parameter from zero to infinity gives the spectrum of optimum bodies
with the given condition from the slender-body result to the two-~
dimensional. The numerical results show that for increesing values of
the paresmeter, the optimum shapes quickly approach the two-dimensional.

A reciprocity relation for axlial flow is derived, and it is used in
formulating the variational problems in terms of the drag formuls involv-
ing geometry. Formulation of the minimum problems in terms of combined
flow fields is found to lead to extremely simple relations that are sat-
isfied by the flow fields induced by optimum bodies. The combined flow
concepts are also useful, for example, in checking results found by other
meens,

INTRODUCTION

The design of minimum-drag configurations is one of the fundamental
problems of serodynamlics. For many engineering purposes 1t is, further-
more, possible to make useful predictions and design calculations for
steady flight by considering additively the drag attributable to the
viscous nature of the alr and the drag that occurs In an jinviscid medium.
Since efficient flight is closely associated with the use of aerodynamic
shapes producing relatively small disturbances in the air, the analysis
upon which the inviscid-fluid theory is based cen, in many cases of prac-
tical interest, be further limited to first-order approximations involving
small perturbations. For supersonic flight speeds such an analysis is
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linear, the perturbastion velocity potential of the flow field satisfies
the wave equation, and the pressure drag of nonlifting configurations _
results from the accumulation of energy in the waves induced by the body
during its motion,

The purpose of the present paper is to show how most favorable body
shapes, under varilous given conditions, can be derived by using formulae
for drag prediction that are based upon the linearized theory. The type
of body to be treated is a nacelle- or duct-like configuration (nonlifting
and having axial symmetry) which induces perturbations that are gpecified
on the surface of a circular cylinder, The analysils might be termed quasi-
cylindricel, since boundary conditions are applied on the surface of a
cylinder rather themn on the body itself., Only the externsl flow is con-
sidered,

There are two rather different methods availsble for the calculetion
of drag of such bodles., The first, given by Werd in reference 1, expresses
the drag in terms of the geometry of the body and of a welghting function
first encountered by Lighthill (ref, 2) in connection with the drag of
fusiform bodies. The second result, published recently by Parker
(ref. 3), 1s a formula in which the drag is expressed in terms of the
strength of an axial source distribution that simulates the body shape.
Generally speaking, the formule giving drag directly in terms of geomet-
rical characteristics would be prefereble, since the ususl suxiliary con-
ditions in variation problems, such as given volume, given caliber, etc.,
are also expressed in geometricel terms, Unfortunetely, however, the
variational problem in this case leads to an integral equation whose
kernel 1s the Lighthill function mentioned previously, and the properties
of this function are not at present well enough known to ensble one to
solve the integral equation by other than numerical methods, On the
other hand, the expression for drag in terms of sources leads to. a trac-
table integrsl equation, although the relations between source strength
and geometry are somewhat complex.

Problems of the sort to be treated here have been attacked by Ferrari
(refs. 4 and 5) and by Parker (ref. 3). The first-nsmed author has
approached the problem of minimum drag with assorted isoperimetric con-
ditions by both the above-mentioned methods, but the main effort was made
in connection with the source-strength method applied in conjunction with
a control surface consisting of e frustum of & cone, A large number of
cases have been worked out, mostly by numericsl methods, The other work,
reference 3, gives & solutlon to the problem of the minimum-drag body
with given caliber, making use of boundsry conditions on the Stokes!
stream function, rether than the potential function.

In this paper we shall approach the problem by the use of both methods
outlined above, In an introductory section, the operstional approach to
the wave equation 1s extended to bodies having peripheral as well as
longltudinal variations of surface shape, The anslysils is then restricted
to the case of axlal symmetry and the two drag formulse are given., Then
a reclprocity relation for axial flow is derived, and the notion of
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combined flow fields is introduced. This device leads, through applica-
tion of the reciprocity relation and the drag formula in terms of body
geometry, to extremely simple physical characterizstions of the flow
flelds associated with optimum bodies. Next, in order to derive explicit
expressions for some optimum bodies we consider the source-function
gpproeach in combination with a cylindrical control surface on which
boundary conditions sre specified. The results obtained are discussed
with the aid of numericael examples, and, finally, the reciprocity rela-
tlons derived egrlier are exhibited in terms of the expliclt solutions
found, and some uses of the reciprocity results are indicated.

The Appendix is devoted to sumarizing the results of the minimiza-
tions for the convenience of the reader.

LIST OF IMPORTANT SYMBOLS

8o speed of sound in free stream

Aq(x) strength of source distribution

B(a) function used in isoperimetric problems (See egs. (60).)
Cp pressure coefficient, P;go

D drag

E complete elliptic integral of second kind of modulus k
k modulus of elliptic integrals

K complete elliptic integral of first kind of modulus k
Km,Tm Bessel functions of order m (See ref. 8.)

A length of hody

Mg Mach number in the free stream, g%

nj,No,ng direction cosines with respect to Cartesian axes of the inwerd

normal to a surface

P pressure
Po pressure in the free stream
P pressure in & combined flow field, p - p

40 dynamic pressure, % poU02



Ar(x)

S(x)
AS{x)
Xy¥s2

U,V,W

Ly
T(e?,k)

NACA TN 3389

radial coordinate, Ny2 + z2

incremental radius on control cylinder due to source distribu-
tion along axis

radius of cylindrical control surface

cross~-sectlional area of a body

S(x) - s(o)

Cartesian coordinates

perturbation velocities in x,y,z directions, respectively
free-stream velocity

perturbation velocity in radial direction

volume of body

additional volume wrapped on cylindrical control surface
function defined in equation (25)

parameter of elliptlc integral of third kind

Mo® - 1

dimensionless streamwise coordinate, %

angular coordinate, tan'l-‘-)z-r

Lagrange multipliers in isoperimetrlc problems

complete elliptic integral of third kind of modulus k and
parameter o2 (in notation of ref, 20)

free-stream density

FR

—

1

perturbation velocity potential
Suffixes

differentiation with respeet to streamwise coordinate

quantity evaluated in reversed flow field
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Laplace transform

v
18

S

* dimensionless quantity as V* = 3 s¥ = 72 ete.

INTRODUCTORY ANALYSIS

The anelysis to be given here is adapted to boundary conditions
specified on a right circular ecylinder so oriented that its axis is paral-
lel to the free-stream velocity vector. TITmmediste spplication thus follows
for quasi-cylindrical shapes that deviate slightly, both longitudinslly
and peripherslly, from a cylindrical control surface although the expres-
gslon for drag can be extended to include the domain of slender-body theory.

Consider a Cartesian coordinste system fixed relative to & supersonic
free-stream velocity U, and Mach number My = Ug/ag > 1 where &g is
the velocity of sound in the free stream. The x saxis is alined with the
direction of the flow and the lateral coordinates ¥,z may also be expres-
sed in polar coordinates r,0 where r =Jy2 + 22, 6 = tan"%z/y. A cylin-
dricel control surface of radius r =R = const. is given with the range
0 <x <1 and on this control surface the perturbation velocity compo-
nents, together with their gradients, are small relstive to Up and Uo/l.
Under these conditions the field external to the cylinder of radius R
has for its governing equation the linear relation

BZPxx = Pyy = Pygy = O (1)

where the subscript notation denotes partial differentiation, @(x,y,z) is
the perturbation velocity potential yielding the perturbation veloecity
components

w(x,y,2) = ¢x(x,y,2), v(x,y,2) = Qy(X)Y:Z), w(x,y,2) = @z(x,y,2)

and B2 = M02 - 1. The boundary conditions on the body are to be taken
in the form

Pr(x,r,6) 1. g = UoG(x,6), 0<x<1 ' (2)

where G 1is a known function of x and 8.
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A General Solution of the Wave Equation in Cylindrical Coordinates

If equation (1) is rewritten in the form
2
B0xy = Py = (1/T)0 - (1/7) 9gg = O (3)

it is possible, through separation of variables, to derive a general solu-
tion representing a rectilinear distribution of source and multipole
slngularities. This general solution caen be found by use of the Laplace
transformation. By definition, the Laplace transform® (see ref. 6) of a
function F(x,r,8) is F(s;r,8) where

F(s;r,0) = \/pwe'sxF(x,r,G)dx (L)
o

If one employs this transformation and epplies initial conditions consist-
ent with supersonic flow theory (ref. T), equation (3) becomes

%% - Bpy - (1/7)0r - (1/?)25éa = 0 (5)

The transform of the pertubration velocity potential is assumed separable
in the form
P(s;r,8) = {(r,s)cos mo

and it follows directly that {(r,s) must satisfy the ordinary differential
equation

¢ + . [l bis }Q =0 .
d(Brs)2 Brs 3a(prs)

Thus, the solution can be written

©(s;r,0) = - -2-1; Z cos mB[Km(s)Km(Brs) + ﬁm(s)Im(Brs)]
o

1Tt will be assumed through the present section that the origin lies
upstream of all disturbance points in the flow field. Subsequently, the
origin will be shifted so as to lie at the upstream face of the control
gsurface or body.
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where Ky and I are modified Bessel functions in the notation of ref-
erence 8. The asymptotic expansions for the Bessel functions show that
I, ylelds incoming waves suiteble for the analysis of flow inside a tube
or cylindricsal control surface; Ky yilelds outgoing waves that are sulted
to the calculation of the field external to a tube. It follows that one
has, in the latter case,

a(s;r,e) = - EJ;ZKm(s)Km(ﬁrs)cos me (6)
5

The inversion of equation (6) can be achieved in two ways. First,
from reference 9, page 277, and the convolution integral, one gets

o(x,r,6) = - = fx'ﬁr Ao(x1)dx:
=2 -
o o ~[(x - x31)® - pE°

-1 X - X
x-fr Am(xl) cosh <m cosh™? -———l> dxq

00 =
cos mP (1)
g f J(x _ xl)z - p2r2

o]

Second (see, e.g., ref. 8, p. 79), one has
ol d v
Kn(prs) = (-1)" zizm (I'E:> Ko(Brs)

Thus equation (6) can be rewritten as

ifl) Ko(Brs)

o(s;r,8) = - % A (8)K,(prs) + i(— -g—mcos mo (_1%1)“1
3

and the inversilon is

o(x,r,0) = - 2+ fx-ﬁr Ao(x1)dxy
Y an e} J& - x1)2 - p&F

% m -B
NGOEICONEE =1l
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where the funetion Cp{x) 1s given by (from operational calculus rules)

\/px&xm <t .L/°X3dx2 szm(Xl)Xm
o

(o] (o]

Crn(x)

- i “(x - x0)™ 2ag(xy)dxy (9)

(m - 1 A

Equation (8) expresses the solution in the usual form, given, for example,
in reference 10, page 527. For some purposes, numerical calculations

for example, equation (7) has advantages over equation (8). The two solu-
tions express the perturbation velocity potential in terms of distributions
of slngularities along the eentral axis, the first term representing a dis-
tribution of supersonic sources of strength._ Ao(x)dx and the subsequent
terms representing multipoles of order m.

It is of interest to calculate the limiting forms of equations (T7)
end (8) for large &nd small values of r. For large r, equation (6)

becomes T = —

e BTS00 mo (10)

o(s;r,8) = - é; A (s)

2Brs

of™~1s8

where the asymptotic form

k1 -
Km(z):fézez

has been used., The perturbation velocity potentiel is then

.1 ¥\ x=pr %
cp(x,r,e) & - E;J—EE;Z cos m9[ Am(ﬁ) m (ll)

The ultimate attenuation of ¢ wilth lateral distance 1s therefore fixed
by the factor 1AfT. For small r, equation (6) becomes

P(s;r,8) = - El;f I:-Ko(s) in ) i Ap(s (m - 1)¢ <BI‘ > cos mG:I
1

(12)

»
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where " 7 = 0.577 is Euler'!s constant. The inversion of equation (12} is

x
p(x,r,8) = é% [Ao(x)ln %? + g%k/h Ao(x1)1n IX - xl!dxl +
o

5?(;% m.SELéfili cos md qm(x)] (13)
i

where Cp(x) is defined in equation (9). This result was used by Ward
(ref. 11) as a basis for the development of slender-body theory.

As presented, the sbove general solutions (egs. (7) end (8)) were not
related to specifile boundary conditions. The formal development of this
relation is stralghtforward and leads to an explicit solution for boundary

conditions given on the cylindrical-control surface at r= R = const.
Let the given conditidhs be

[+2]
Prlog = UoG(x,8) = Uo ng(x) cos mé (14)
3
From equations (6) and (14), one has

Tel537,0)]op = - B ) Bul®) | o= Fu(prs) | cos m0 = o ) Ba(s)cos u0
° ' r=R ° (15)

Since

= Ku(Brs) = Bekn' (Brs)

equation (15) yields

—_ 27¢Uo -én(s)
Aul®) = - =5 o1 (Re) (16)

and the transformed velocity potential is, from equation (6),

Up \' 8u(s) Ka(prs)
P L. & Kp'(BRs)

P(s;r,0) = - cos mf (17)
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In order to give the desired expression for o(x,r,0) it is necessary to
calculate the inverse Laplace transform of the functions Km(BrS)/Km'(BRs).
This task has been undertaken by Mersman (ref. 12).

External Wave Drag of Quasi-Cylindrical Body of Revolution
In Terms of Its Geometry or Source Distribution

Attention is now restricted to flow fields possessing axial symmetry
wlth respect to the stream direction. Independence with respect to 6
then reduces equations (7) and (8) to ’

X-Br
o(x,r) = - = Aolxa)dxy (18)

an o JTX - x1)2 - B3

.
and the velocity potential is expressed 8s a rectilinear distribution of
supersonic source potentials. Operationally, equation (18) takes the
form

P(s3r) = - E:I;KO(S)KO(EI'S) (19)

The axes msy now be conesidered as shifted so that the source distribution
starts at x = - BR and induces perturbation velocities on the cylindrical
surface r =R, 0SS xS 1. For r 2R one then has the disturbance field
assoclated with a body of revolution that deviates only slightly from the
cylinder r = R. The wave drag of such a body can then be expressed in
two ways: first, as a function of the body geometry; second, as a func-
tion of the source-strength distribution. The first result has been given
in reference 1., To the order of accuracy to which this control-surface
theory spplies, the slope of the resulting surface is

dr ., S'(x) 1
—_— o = 20
e e T ¢r]r=R (20)

where 8'(x) is the streamwise derivaetive of local cross-sectional ares
of the body. This condition, together with equation (19), yields

A(s) S

Uo  PRsKi(PRs) (22)
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where .S'(s) means the Laplace transform of S'(x), and

o(s;R) _ _ 8'(s) Ko(BRs)
Uo 2nBRs K1(PRs)

(22)

In order to calculate drag, pressure on the body is next evaluated.
Denoting by p and p, local and free-stream pressure and setting

do = % poUOZ, one has in linearized theory

P-Po]  _ _ 2u(x,R)
I L:a == (23)
From equation (22)
W(ssR) _ _ _1 =7y Ko(BRs) _ 5'(s) [ _ Ka(BRs) - K5(BRs)
T - pm o () X.(BRs) ~  2mpR | K~(BRs) ] (24)

The inverse transform of the second term involving the Bessel funetion
leads to the function W(x) introduced by Lighthill (ref. 2). By defini-
tion, its transform is

Ki(s) - Ko(s)
Ki(s)

W(s) =

(25)

Pressure distribution on the body can then be calculated from the expres-
sion

P-P 1 , X X - %3\ dx
=" [ [ o ) w (55 R (29)
) wix)
4

The function W(x) is shown in sketch (a);
tabular values for -2 < x <10 are given
in reference 1,

The external wave drag Cp, of the

body is finally determined by direct
integration

2 o0 2z 4 67

Sketch (a)
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i
_ _drag =_l_f P~ 2o gr(yx)ax (2
Do " aee e Tmo (27)

and from equation (26) is

O, = b {2[1[5'(:;)]26.:: - B%[z[zé'(g)s'(xl)wG'f—g{—“—)ax d.x;_}

(28)

In a later section entitled “Geometric Criteria for Minimum Drag," the
role equation (28) plays in problems involving drag minimization will be
digcussed, For the present, it may be remarked that although the magnil-
tude of the influence function W(x) is known, its snalytic properties
are not well ehough defined to permit easy manipulation. It will become
more apparent later that for certein minimum-drag problems an advantage
1s provided when one deals directly with source distributions and estab-
lishes the relationship between geometry and source strengths as a sepa-
rate part of the analysis. :

Equation (18) expresses the potentiasl of a source distribution of
B8trength Ao(x)dx. On the cylindrical control surface r =R and within
the range 0 <x <1 an effective body shape is induced and the drag
of this body can be calculated as follows, The streamwise and latersl
perturbation-velocity components are, respectively,

x-ﬁr ]
oxlem) = - & [T Lollniltn (29)
-fR ka - x31)2 - g2
1 PXPr (x - x3)A0t(x1)dxy :
Pp(x,r) = P /e m (30)

where Ag(x1) =0, for x3 < - BR. The effective body, within the range
0 <x <1, is fixed by the boundary conditions of equation (20) and its
external wave drag ls
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o
"

' 2
- E@QRf Px(x,R)pr(x,R)dx
[e]

1 X—BR A t - dx X-BR N
_ %% dx\/h ot (x1) (x - x3)dx; u/‘ Ao (Xeidxz (31)
o) -BR ‘J(x - x1)2% - BZRZ -BR 's[(x - x)° - BZRZ

The dummy varisbles x;, X, can be interchanged; 1f one then combines the
two expressions of equation (31) and inverts the order of integration, the
integration with respect to X can be performed and there results

_p_ofz-sR fz-sR 1] (- x) (1 - x2) - B3R ax

D = o Aot (x1)dxy A" (x2) cosh PR(xs - x2)
-BR -BR
- (32)

as given in reference (3).

It is of interest tbo remark that although equation (32) uses only a.
knowledge of the function Ag(x) in the range -BR < x <1 - BR, the drag
that is calculated presupposes a specific source distribution function in
the range 1 - BR < x if one wishes to identify the drag with a geometric
shape, Thus, as in sketch (b), if the body shape near r =R is assumed

v
4 /

f)duced sfrearrl 7 direction

Sketch (b)

to have some arbitrary varilation for O < x <1, and to straighten out into
a purely cylindrical surface downstream of x = 1, & source distribution
funection is required downstream of x =1 - BR to produce the cylinder.
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The fact that the strear velocity is supersonic means that upstream
influences of Ao(x) for x >1 - BR cannot be felt on the body and
explains why the dreg of a complete geometric shape can be determined
from its source distribution without know1ng the complete details of the
distribution function.

As another example of the use of

equation (32) consider, as in sketch (c),
& clrcular body extending from x = - BR
to x = 1 wilth a cylindrical afterbody
of radiue R aft of x = 1. If the
source distribution of this body is known
a8, say, for example, in the case of a

X cone or slender hody of revolution, the
body drag can be determined by using the
surface r =R, 0 £x <1 as a control
surface and calculating momentum trans-
port through the control surface, Egua-
tion (32) is the exact expression for
the body drag, and, again, requires no

Sketch (c) knowledge of source strength beyond

= 1 - BR,

COMBINED FLOW FIELDS

One method of attack that has proved to be extremely helpful in the
analysis of problems in serodynamic theory involves a symmetrization
process in which flow fields in both forward and reverse flow are related.
Attentlon, up to the present time, has been devoted principally to planar-
type problems and in reference 13 Jones has used this approach to derive
eriteria that appear in the minimization of wave drag of, for example,
nonlifting wings having specified thickness ratios or volumes. 1In this
section, a brief discussion is given, using the methods of reference 1k,
of the way these concepts appear in cylindrical-control-surface analysis.

The Reciprocity Relation for Axiel Flow

BEquation (1) can be written
L{p) = p%pyy = Pyy = Pz = O (33)

where L(Q) is a self-adjoint linear operator. Let now W(x,y,z) and
a(x,y,2z) be two solutions of equation (33) satisfying boundary conditions
given on a circular cylinder. Reciprocal relations between ¥ and Q can’

*|
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be derived by applying Green's theo-

rem over a prescribed geometric Py J
region. Conslder, a8 shown in 2 3
sketch (d), the eylindrical control

surface extending from =x = 0 to

x =1 and draw the enveloping Mach 3y
cones at the front and reéar of the /
surface, Denote the cylindrical sur=- — —7

face by I,, the front Mach cone -/ > x
X - Br =~ BR by X5, and the rear - f

cone X + Br =1 + BR Dby Xa. These
surfaces enclose a toroidal region,
bounded internally by X, and exter-
nally by X, and Zg. It foliows from
Green's theorem that the integral
relation

Sketch (4)

ff 1[r<-;32n1 -gﬂ—x + np gﬂ—y + ng -g%)dz

=ff Q(—Ban gﬁ + np % + ng %’f)dz (34)

applies where the surface integration extends over Z15Z5, 5 and n;,
ng, ng are direction cosines, with respect to the x, y, z axes, of the
surface normal directed inward into the region.

It is customary to re-express relations like equation (3%4) in terms

of a newly defined directional derivative along a line termed the conormsal.
In this manner, the equation becomes

[fwge- ffate
where

X2 o) x®
ov  dx vi® oy va ¥ oz Vs (36)



16 NACA TN 3389

and the direction cosines vi, Va, Vg Of the conormal are derived from
-nlﬂz = A.Vl, Ng = A-'Vz, g = AVs

By calculation of the respective normals ni, np, ng snd using the relation
vi® + v22 + va® = 1, it is readily found from the equations defining the
conormal that on the surface &£,, the conormal is normel to the surface

and A = 1; on & Mach cone, the conormel lies along the cone end A = B.

let now ¥ be set equal to o(x,r,8), the perturbation velocity
potential associated with boundary conditions in = forward-flowing streamn,
and let @ be u(x,r,0), the x-wise component of perturbation velocity
associated with boundary conditions in a stream flowing in the reverse
direction. Under these conditions, equation (35) becomes

&% b o) + 32 + v
x x
%r R de J u S dx Bt/i/hu Sv as, + B \/pu Sv aX

=f2“Rdefzq:a—ﬁdx+Bffcp-a—ﬁdZ +Bffq>§ﬁdz
/ dr = dv 2 v ©°

(o]

On the Mach cone Z,, the perturbation potential may arbitrarily be set
equal to zero and its conormal derivative along the cone will also be zero;
as a consequence, the second terms on both sides of the equation vanish.
Since the flow fields are irrotational, d%/dr = O¥,/0x where vy 18
radial velocity. After msking this substitution and integrating the first
term in the right member by parts, one gets

25K A 2% . 1
Rf def Uvpdx =Rf [cp(z,R,e)-t‘rr( 1,R,8) -f Vru dx]de -
(o] (o} o

o} o
a2 x= -aﬂ S
de r(d - —)dv
P f f ( v @ Bv)
o x=l/2
The last integral becomes -

_BIZ“de fXﬂ(J; 0L @ av
(o]

x=l/2

-~
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and for the given boundary congitiong it is possible to show that along a
conormal of Zg the relation vy = Bu holds and NT u is independent of
Y. The integral then can be rewritten as

-T: x=l 2 4 (/9 =
[ [ & Qo - Tasnnon
o x=l/2 °

end one has, finally, the desired reciprocal theorem
2

2% o1
—Rf def u(x,R,0)vp(x,R,6)dx = Rf aef u(x,R,6)vp(x,R,0)dx
° © © © (37)

[/

It is not the purpose here to exploit the various applications of
equation (37); rather, the role played by the reciprocal relstion in drag
calculations will be considered. In the forward and reverse flow fields,
the pressure-velocity relations of linearized theory are

P - Pg = "D()Uou’ 5 - Po = poUoﬁ (38)
If, furthermore, thickness distributions of the form

r = £(x,6), r = £(x,8)

are placed on the cylinder r = R, the boundary conditions are

ix) 2 o%) %
Uo dr pp OX ’ Uo 3r =R dx

Equation (38) can then be written

1

21 o A ~
-f Rdef(ﬁ-po)g%d.}c:f Rdef(p—po)-g—f—;dx (39)
(&) [¢]

(¢] o
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An immediate consequence of this last resu;t is that for a unigue
thickness distribution, that is, for f£(x,8) = £(x,6), the drag of a )
body in forwerd and reverse flow 1s the same. Thilis follows from the fact ~
that for guasi-cylindrical bodies the relations for drag are, respectively,

a2n [ 3¢
D=Rf def (p - pO)I._Ra ax
o) o
. 2% 1 B‘f
D=—Rf def (ﬁ-po)r___R&-d-X
o) O

For fixed geometry, therefore, drag is equal to. half the sum of these two

' expressions
2% 1
R ~ of -
D_—éf def(p-p)rﬂadx

o o . -

Defining pressure P(x,r,8) in the combined flow fields by the following

P(x,r,0) = p - P = ~PoUpf{u + 1) _ (4o)
one has .
R 2% Al 3r
D = Ef def P(x,R,0) S & (1)
fe) o . '

If the body has axiel symmetry, equation (41) reduces to the form
given in equation (28). To show this, one notes first that P and f are
independent of 6 and that equation (41) becomes

D= k/nzPS'(x)dx -

O
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The proof follows from the relations

St(x) = 8'(x)

u(—go&) - - = [S'(X) 'fxst(xl)w <x_f-3% %CRL]

0

(k2)

o - 2 0 v )]

[¢]

P(;C;R) - ;éR [esf(x) -leS'(xl)W (lx ;;RX1I) d;;l] J

Geometric Criteria for Minimum Drag

Consider now the problem of minimizing the wave drag of a quasi-
cylindrical body subject to the condition that the volume of the body
is constant. The body surface may be defined by

r = £(x,8) = R + g(x,6) (k3)

The function g(x,e) determines the magnitude of the surface displacement
Prom the cylinder xr = R; these displacements, as well as +their gradients,
are assumed small and we also assume

g(x,0) =0 for x <0 and 1<x

If equation (41) is integrated by parts with respect to x, the wave drag
of the body becomes

2% IA -
DB [Ta f Pt (x,R,0)g(x,0)dx (k)
(6) o )

where the prime indicates x-wise differentistion of P. The imposed
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geometric constraint on the variational problem is

1 2% - l 1 27 A N
) \/h d.eh/w £2(x,8)dx = 5 L/ﬁ deb/’ [K® + 2Rg(x,6)ldx R
O O O O B

a2t A1
= 1R + Rf d‘e.f g(x,8)dx = V = const. (45)

o] o

where V is the total volume. The problem thus becomes one of minimizing
the expression : —

D - UV = - R{% [2“de[ZP'g(x,9)m + p[@z +[2ﬁd6[Zg(x,e)&]}(h6)

where p 1is the Lagrangien multiplier. Carrying out the variation, one
has " : -

2% 1 . . _
o0 - ) = - B [ a0 [ [#1(00) + (0P + 2utglax = 0
o} e}

but from equation (37) or (39) it can be shown that the first two terms
in the integrand yield equel integrals and the minimizing condition
becbmes

2% 1

f def [P*(x,R,0) + pnlég ax = 0

Q [s}

Since this latter equation must be satisfled by all possible varia-
tions of the dlsplacement function g(x,e), it follows that the desired
condition is

P*(x,R,8) +p =0 (47)

Stated In words, the condition for minimum weve drag of & quasi-cylindrical
body of glven volume is that the longitudinal gradient of pressure on the -
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body in the combined forward and reverse flow Ffield is a constant. Fur-
thermore, from equation (44}, winimum drag is then given by

Dmin = 5 (V - #®8%1) = § v, (48)

where K can now be identified with the negative pressure gradient in
the combined field and (V - RZ1) = Ve 1s the volume exposed to the fluid
around the cylindricael control surface r = R.

The actual cross-section-ares variation of a minimm-drag constant-
volume body and its pressure distribution are shown in sketch (e) for the

r
P
o P-=Po
~ . —~
— T
S
.
g o~
= ~ ~
Z{ N
~ N
P=Po \\
Sketch (e)

case in which axial symmetry 1s imposed. Pressure coefficient in the
combined flow field of an axially symmetric body has been given in equa-
tion (42). The geometric criterion just esteblished then leads to the
integral equation

. . ,
28t (x) -f s'(xl)w<Ix [;Rxlf i’;{l = -ux + b (49)
[}

and the solution of this equation will determine the body geometry. In
the following section an analogous integral equation will be derived but
with the source-strength distribution chosen as the fundsmental dependent
varisble.

The combined-flow-field technique can also be used to study the
problem of minimizing wave dreg for specified body caliber or, more
generally, when the body has & fixed cross section at a specified
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longitudinal position. The resulting condition for minimum drag is that
the pressure distribution on the body in the combined flow field is a
constant forward and aft of the specified position. These conditions
?re all ?nalogcus to ﬁhose obtained for planar problems by R. T. Jones
ref. 13

DRAG MINIMIZATTON

In this divislon, optimum bodies having certaln prescribed geometric
properties will be determined by standard va¥iational methods. The anal-
ysls will, as mentioned previously, deal with the strength of an axial
source distribution &s the minimizing function, rather than the geometric
quantity, cross-sectional area. Thus, we shall he concerned with formula
(32), giving drag in terms of the source distribution.

Quasi-Cylindrical Body of Revolution of Glven Volume

Isoperimetric conditions.- The configuration to be considered,
together with assoclated nomenclsture, is shown in sketch (f). The geo-
metric properties of the body
Us r can be expressed in terms of
—_— 4 the source distribution func-
A7 tion Ap(x) by using equa-’
- —r-— - —= tion (20), namely,

( 1
R / /
T SN

PN Y-
LR -8 \, st(x) = Tq)r] (50)
=R

‘%_——————-l———_“‘q Then, from equation (30)

Sketch (f)

dx; (51)

1 k/hx-BR Agt(xi)(x - x1)

St(x) = —
Yol Jix-x)? - %R

If equation (51) is integrated x-wise it is seen that

2- BR(Z - x31)A60% (x1)dx; |
8(x) - 8(0) = & (52a)
f j_;R J(z - x,)2 - B%R°
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By changing the order of integration and performing the integration with
respect to z one finds

x-BR  (x - x1)Ao(x1)
8(x) - 8(0) = = —— dx (52b)
Ug LZ;R *i(x - x3)2 - B232 .

or, integrating by parts,

x-BR
5(x) - 8() = ¢ f o' (x)N(x - x0)Z - PoRE dxy (52¢)
-8R .

The magnitude of the additionsgl volume wrapped sround the cylinder 1s

A
Vo = f [5(x) - 8(o)lax (532)

[e}

and, from equation (52b),

1-BR
Ve = f A (x (1 - x0)2 - BER® dxy (53b)
o o _ '

The varilaetionsl problem.~ The quantity to be minimized will be teken
as D - pVe. From equation (32), the drag can be written, after an
integration by parts,

Bo(xz)dxy 1-BR a1 (N (2 - 22)2 - BOR0

1-BR Jf
_Po f _ — . dxo
Ly R QQE‘— xl)z ~ BZEZ e X1 - X2
(54)

In addition to prescribing the volume added to the fundemental cylinder,
we shall also require that the body return at the end to the same cross-
sectional ares as at the front. Thus, according to equation (52b},

o 1-BR (1 - x3)Ao(x1)dxy (55)
) -BR JRZ - xl)z - 5232 %
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1s & condition to be met by the minimizing function Ao(x3), and by its
variations.

The quantity D - RiVe can be formed from equations (53) and (54),
and if the variation is performed, one finds the condition S

JFZ'BR BAo(x1)dxa Jpz'ﬁR A" (x2)J (1 - x2)2 - B2
-8R (v - x1)% - B%R® | Upgp X1 - %2

2% ul(2 - x0)® - BRI} = O

Polo

If this last equation is compared with equation (55), 1t is seen that for
aduwissible varietions, the quantity within the brackets must be set equal
to A(1 - xj), where A 1is an arbitrery constant. Thus, the equation for
determination of the optimizing source distribution under the conditions
of given volume asnd closure is .-

1-BR 1 - 2. 2
f Ao (xl)J}(CZ_ xalcl) BR dxy = M1 - x) + i"“l [(1 - x)® - p2R?]

_“BR (56)

Equation (56) is recognized as the familiar airfoil equation with

[Ao'(xl)'\f(l - x1)2 - B2R2] as the unknown. Thus we write the solution
immediately as (see, e.g., ref. 15)

1-BR
Ao*(xa W (1-x)%-p"R" = L x f Bo (x)f(1-x1)B-pPR%dx 1 -
% J (1-BR-x) (x+BR) LeR

1-BR A z—x1)+ [(I-XJ_)Z-BZRZ]
J (2-BR-x3) (x1+BR) &xy

X - X3

-FR

The first integral on the right vanishes according to the closure condi-
tion (55) and, if the remalning integrations are performed, we find
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A" (2N (1-%)2-B"R" = L {1(7‘;?3) 2l Ha+ 27\>+

n,/(1-R-x) (+R) ol

1-gR-x [w\(z 2x)+

3 1 (312-4pR1 8B2R2-l22x+8x2)]}

OO

It will be noted that unless

By + 2A =0
PoYo

this solution for Ay'(x) does not obey the closure requirement. There-
fore we impose this last condition and finelly obtain

(12 - 48R1 - 8B3R®) - 8ix + 8x%°
At (%) = )-I-p (57
o V(1 + BR - x){x + BR)

The strength of the minimizing source distribution Ap(x) is now obtailned
by integrating equetion (57);

A (x) = [(1 - EXl/(Z + BR - x)(x + BR) ~ 2B82R2cos~1 -1-3—25]

1 + 28R
(58e)

2pqUo

Properties of the optimsl source distribution.- It is convenient to
express the various quentities such as source strength, area distribution,
etec., as dimensionless functions of the dimensionless verisble 14 = x/1
and parameter o = BR/l. Thus, indicating a dimensionless function by a
star, we have from equation (58a)

A(0) _w w11l =27
Ag¥(n) = v Eai [(l - 2n)/(n +0)(1 -1 + o) - 20%cos™? I_:—E;]

(58p)
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It will be noted that if the radius of the control surface is teken very
smell, so that o => 0, formula (58b) becomes -

B*(M)], 50 = ‘fi (L - )l =)

which 1s the well-known glender-body theory result for the source distri-
bution corresponding to en optimum body of ‘given volume (refs. 16 and 17.)

In order to determine the value of the Lagrenge multiplier w3, in
terms of the prescribed volume Ve, 1t is convenient to find first the
expression for the local cross-sectlon area of the optimum body. Thus,

using equation (52c) (with S*(n) = fﬁ s(in)),

s¥(n) - %(o) = %%ﬂn ¥ 20)(L - 1 + 20)[n(1=1)E - o(L - 4o)(K - B)]
(59) -

vhere K and E are elllptic integrals of the first and second kinds,
respectively, of modulus

K2 (1 - .“)
(n + 20)(1 - 1 + 20)

Using equation (59) in equation (53a), we find

. .
ver < B2 IR < 1 ¢ 20) (2 - ME - oL - ho) (X - Bl
6q.0 [o}

L (60e)
6a,

which expresses the constent H3, in terms of the prescribed volume

v
V¥ <%-Tg> end of a function B of the quentity o = BR/l. A graph of

this function B(o) versus ¢ is shown in figure 1. Shown also in
figure 1 is a dashed line that corresponds to the asymptotiec form for
B(o), which is

B(o) z--11‘-6- (1 + Lo) /-1%2-6- - (60b)

The closeness of ‘the assymptotic values to the exact values even for
relatively small values of ¢ ie noteworthy.
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The formulae (58b) and (59) for the source strength and cross-section
area, respectively, can now be recast in terms of prescribed quantities

Ao*(n) _3 e [(1 - 2n)f(n + o) (2 - ) - 20%cogt 2= 21| (g
2 B(o) n + N+ 0} - cos 1+ oo (61)

S*(n) - 8%(0) - (Ve*/Vo¥)
s*(o) B(o)

J(n +20) (1= 1 +20) [9(1- 1)E = 0(1 - bo) (K- E) ]
(62s)
where Yp is the volume of the original cylinder section,
Vo = :R31 = 18(0) = 13V ¥
Consider the expression (61) for the source function Ag¥(n). In the
parameter o = BR/l, we may think of B as fixed and 1 as unity, so

that variations in ¢ samount to variations in the size of the control
surface of radius R. Thus, in sketch (g), the case ¢ =0 corresponds

-/0 .
\ w0 7

_5..

Sketch (g)

to the source distribution for the well-known Sears-Haack body (refs. 16
and 17). It will be noted in the cases where ¢ >0 that the source
functions become less steep and attaln lesser maximum values because the
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volume remains the same while the control-surface cylinder is increasing,
thus giving a smaller maximum radius of the added portion. N =

Next let us exemine the expression (62a) for cross-sectional area.
First, we notice that 1t can be written

*

* Ve
8 (q) - 8¥*(0) = (o)

n+ 20) [n(1-n)E-o(L- ko)(K-E)] (62b)

in which form it reduces formally for o —> 0 to

s*(n) = 2 ve¥in(1 - 0)1%/2 (62¢)

which is identical with the expression for cross-section area of a slender
optimum body of prescribed volume (Sears-Hasck body). Of course, Vo is,
in this case, the total volume of the body. On the other hand, if we
allow the radius of the control surface to increase indefinitely, equa-
tion (62b) gives (using the asymptotic form for B(o), eq. (60b)$

s*(n) - 8%(0) = 6Ve*n(L - ) -

In the case when R 1is very large, we take

8(x) - 8(0) = oxRAT(x) (63)
80 we have, returning to the originel varigbles, -

e x“z; %) (64)

or(x) = 6

where Ve/2nRl 1s a finite quantity, and, in fact, is the average height
of the protuberance egbove the control cylinder. Thls result is clear
from physical reasoning, for one would expect that as the control cylinder
increased in radius, the two-dimensionel result for the optimum problem
would become more nearly valid, end, indeed, equation (64) is the formula
for a two~dimensional biconvex section, where Ar is distance from the

mean line, 1 1s chord length, and maximum thickness is ;g; .

It will be noted that the area distribution as glven by equation
(62b) has fore-and-aft symmetry, since the functional dependence upoh 1 T
involves only the combination n(l1 - ). The maximum cross-section of
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the optimum body then occurs at the midpoint 1 = 1/2 and is given by
(from eq. (62b))

s¥ « - 8%(0) = ave® ﬁ B‘% - o(1 - ho) (X - E)] = 2V T(0) (65)

where the modulus of the elliptic integrals is now k = l/(l + Lg). Sketch
(h) shows the function T(o) versus o.

85

B3

N4
[\

73 \\

77 -
\\\\.~

Sy 3 4 5 6 7 & 9 DL
o
Sketch (h)

The drag of the optimum bodies can now be evaluated., From equations

(54) and (56)

1-BR
f Aq(E)as {7\(1 ~E) + gﬂ{% [( - &)2 - BZRZJ}
‘R V(1 - €)2 - p3R2 o

D =

518

The integral involving A vanlshes because of the closure condition. The
remalining integration gives

1-BR

D =.-2—%j_;3 2N - F - PR a = EZe (66)

by equation (53b). Finally, using the evaluation of p, of equation
(60a), we have
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o - > 7%8(9) : T

Numerical results pertaining to the problem just solved will be given
in a later section, and a summary of the important formulae 1s given in
the Appendix.

Quasi-Cylindrical Body of Revolution With Given Caliber

The variational problem.- For this problem, we prescribe the area
at the base of the body, so the given condition is, from equation (52b)

LBR (1 = xq)Ao(xq)dx
As=s(z)-s()=i oM 68)
V%), T ‘

The varlation can be taken as before (now without invoking the closure
condition) on the quantity D + AAS, and it leads to the integral equation

JFZ—BR Aot (x N (1 - x3)2 - B%R°

21\ ;
» e Gxy = - EER (1 - x) (69)

The solution to equation (69) consistent with the given conditions is

. _ & UO(AB) L 1 - 2x
Ao (x) = % 1(1 + LBR) (2 + PR - x)(x + BR) (702)

Integrating this expression, we find for the strength of the opilmizing
source dlstribution

A(x) = % Uo(AS)

323_:TZEES. J(1 + BR - x)(x + BR)

(70b)

The source distribution of equation (7T0b) represente the first approxima~
tion to the result of reference 3 for nearly equal front and rear radii.

Properties of the solution.- As in the section on the body with pre-
scribed volume, we now consider x made dimensionless by division by 1,
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end again set ¢ = ﬁR/Z. The veriocus gquentities of interest in connection
with the caliber problem then become

") =8 L AT (T -1 ¥ ) (70¢)

o (1+20) (1+k4a)TI(a?, k) - (1-21) (n+20) (L-n+20) B-(1+20) (1-n+20) K

n(1+ka) J (n+20) (1-n+20)

(71)
where Il(dz,k) is a.complete elliptic integral of third kind of modulus
k2 = n(1-n) and paremeter o2 = ——N __ , Again K and E are

(n+20) (1-n+20) 1-n+2¢

complete elliptic integrals of the first and second kinds, respectively,
of the same modulus k.

If we allow ¢ to approach zero, equation (71) becomes, in the limit,
s¥n) 2 —
5%y "= (s - (1 - eqln(1 - 1) (72)

which i1s the shape function for the well-known Kermen ogive (ref. 18).
At the other limit, when o —> =, equation (71) givés (in the originel
variables)

8(x) - 8(o)

==X
AS 2

or, using the approximation of egquation (63),

E

(73)

K

(2)
which is again the expected two-dimensional result for specified caliber.

The drag can be found by substituting equation (69) in equation (54),
and then using equation (52b). There results
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D _ ) (AS)z
W7 L bo) 12 (74)

& summary of formulee pertaining to this body will be found in the
Appendix.

Examples of Optimum Bodies

The optimum body of given volume.- In order to examine in detail the
dependence of the body geometry on the parameter ¢, we may return to
equation (62a). The quantity [S*(n) - 8*(o)] is actually the local cross-
sectional area added to the basic cylinder by the action of the source
distribution. In figure 2 are shown some cases of optimum bodies, having
equel additional volume V¥, for several values of the parameter o. -
Only half of each distribution 1s shown, since they are symmetric gbout
the point 17 = 1/2. The one lsbeled o0 = O is the Sears-Haack optimum
body, end it will be noted that as o 1ncreases, the curves depart rather
quickly from this limiting case and approach the other limiting value of
the biconvex distribution for o —>w. In fact, a biconvex arc drawn
through the end points of the o 1ﬁ2 case is indistinguisheble from the
exact result in the scale used. In the inget of figure 2 is shown the
veriation of the drag of the optimum bodies as a function of ¢. This
drag is also based on equal volume, and shows a falrly rapid decrease
wilth increasing values of o, due to the decrease in the thickness of
the exposed portion of the body. The dashed curve on the drag plot is

D 12
the celculated drag [qo(ve 75E = ﬂd} under the assumption that each

meridlsn sectlon of the body acts as an independent two-dimensional opti-
num alrfoil. This admittedly crude approximation is of course very poor
at low values of o, but its accuracy becomes surprisingly good for ¢
greater than about O.L4, and the spproximation becomes exact in the limit
g —> oo,

The variation of locel cross section wlthk o can be examined also
on the basis of equal exposed area. Thus, using equation (65) in combina-
tion with equaetion (62b), we have

as¥(n) _ - ) ) i
s 2T(U)B( ) Jn +20)(1 - 5 + 20)[q(L - 7)E - o2 Y (K ?é;)

Figure 3 shows plots of equation (75), and it is agein noted that the
departure from the slender-body approximetion (¢ = O) is rapid. The
limiting veristion of area for o —> o 1s also shown In figure 3, and it
is seen again how closely the optimum body-shape functions approach this
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limiting result even for moderate values of o. Also shown 1is the drag
corresponding to these cases.

D _ 3 6
412(88mex)Z  4B(0) [T(0) 12 (7e)

which shows a similar drop from the o =0 wvalue as ¢ 1is increased.
Again,the effective fineness ratio of the bodies is increasing with o,
and, if frontal area exposed to the stream is held fixed, the maximum
thickness of the excrescence vanishes as 1/6 for large o. The departure
of the geometric variation from the slender-body case is most pronounced
near the nose, 7 = 0, where the slope is given by

as*() _ 3w Ve' ), [ 20 (17
an 8 B(o) 1+ 20

which vanishes only as No for o —O0.

The optimum body of given caliber.~ In this case, the maximum cross-
section occurs at 1 = 1 so there is no longitudinal symmetry. Figure L
shows, for several values of the parameter o, the optimum, equal-caliber,
ineremental cross-sectlon area given by equation (71). The inset shows
the drag as a function of o; from equation (Tk)

D - L
AS 2 Tt(l + }-I-O')
%o <T>

Again in this case, the closeness of the optimum distributions ag o
increases to the two-dimensional value (o —> ®) 1s noticesble. This
point has also been made by Ferrari in reference 5 where problems similar
to ours are treated by a different approach. If the expression for cross-
section area {eq. (71)) is expanded in powers of 1/g, it is found that

As*(n,o) _ o _ 1l -a)(3 -2n) (1Y
asF(1,0) " % (ﬂ) e (78)

which shows the smallness of the correction to the two-dimensional result
for moderate values of o.
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Reciprocity Relations

The optimum body of given volume.- The longitudinal and radisl per-
turbation velocities can be determined by substituting the derivative of
the source-distribution function (eq. (57)) into the formulae (29). We
find, at any point (x,r) (r >R} in the field

Pylx,r) Hq ! _
XV .o —_— 1-
Uo Bqq .\/[_x+[3(r+R) 1 1-%+B(r+R)]1 {MJHB(H_R) Jl-xep(xem) I8 +

[2(1+48R) ~4(1428R) (1 -x+Br+BR) JK+4( 1+26R) (Z-Ex)n(aa,k)} (798)

op(x,r) By 1 -{(1~2x)[x+B(r+R)][1-x+B(r+R)]E -
Up 8“qor.thwﬁ(r+R)][Z-x+B(r+R)]

Bri[1-2x+28 (r-R) 1K-4BZR(x-R) [ 1-x+p(r+R) JK + |

4p2(r2 R2) (z+esR)n<a2,k)} | (79b)

where now

x(2 - x)
[x+ p(r + R)I[1 - x+ g(r + R) ]

2 _ _ _X%- B(r - R)
1 -x+ p(r +R)

For the present axis system, the sct_of reversing the flow amounts

to substituting 1 - x for x, and, for the case of the symmetric body,

the longitudinal perturbation ve1001ty in the reversed flow is
U(x,r) = -u(1 - x,r) = - Px(1 - x,7)
Now, from equation (40), pressure in the combined field is given by

P = ~-poUo(u + T) = —poUol®Py(x,r) - 0y (1 - x,r)] (80)
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Substituting equation (79a) into this relation, we.find

P == (2 - 2%) (81)

by using the addition formula for the elliptic integral of third kind.
Differentiating equation (81) we find

P' +py3 =0 (82)

which agrees with the criterion for minimum drag with given volume esteb-
lished in equation (47). The Lagrange multiplier 3 1s therefore
identified as the pressure gradient in the combined flow field. It will
be noted thet equations (8l) and (82) hold everywhere within the envelop-
ing forward and rearwerd Mach cones of the quasi-cylindrical body (see
sketch (d)).

Now considering the radial component of perturbation velocity @,
we find

(x,r) (¢ - x,v) B23(x2 - R2)
mlor)  ael ) P, (@)

so that the relation
cpr(x’r) = -cpr(?. - xyr)
is satisfied on the quasi-cylinder itself, that 1s, when we set r = R.

The optimum body of given caliber.- For this case we find the fol-
lowing equations for the perturbation velocites:

“-’éi;"r) - - M1 + 28R) (K - 2l(a2,k)] (8he)
(o]

2rgolx + B(r + R)1[1 - x + B(r + R)]

(x,r)
- U =T A '.""‘{}x+ﬁ(r+R)][Z-x+B(r+R)]E -
° 2“Qo¥/[x+ﬁ(r+R)][Z-x+ﬂ(r+R)]
;3r(z+2BR)K} | | (8kb)

where the elliptic integrals.have the same modulus and parameter as in the
previous sectlon.
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In this caese, the pressure in the combined flow field i1s

P = -pOUO[CPx(er) + CPX(Z - X,I‘)] (85)

which gives
P = A (86)

so that in this instance, pressure itself is constant in the combined .
flow field.

From equation {8L4b)}, we see that

op(x,r) = 9.(1 - x,7) (87)

glnce the modulus of the elliptic integrals is invariant to the change
X%Z-X. ’

Uses of the reclprocity relations.- The reciproclity relations serve
the dual function of checking the derlved perturbation potential ageinst
minimization criteria based on other considerations (see eq. (47)) and of
relating the Lagrangian multipliers to the pressure or pressure gradient
in the combined flow field. Equations (81) and (86) salso reveal that the
expressions for pressure in the combined flow field hold, independently
of r, throughout the entire region within the enveloping cones of the
bodies. These results are generalizations of a similar effect noted in
reference 19, where the combined pressure: -Tield assoclated with a Sears-
Haack beody was shown to have a constant gradient within the enveloping
cones. In the latter reference, this property of the minimum-drag body
was usel to expedite the calculation of inteference drag with a satellite
body lying within the enveloping cones. Similar methods could obviously
be gpplied to the present configurations._

Ames Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Nov. 22,195k

a
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APPENDIX A

SUMMARY OF FORMULAE FOR THE OPTIMUM BODIES

Uo .
I The formulae derived in
2 the text for the body shape func-
3 7 —-—?_ - / ‘tion, pressure coefficient, and
Vd / drag of optimum bodies having
(; !/ / given volume or given caliber
LY I X are repeated here for conven-
-BR N -8R\, ience. The type of configura-
A \ tion treated, and the nomencla-
—_ == ture, are shown in sketch (Aa).
b —f

Sketch (As)

The Optimm Body of Given Volume

The variation of AS for the optimum body with given volume is

AS(x) = —-—VE-— J(x+2BR)(z-x+2BR) {x(z-x)E(k) - BR(Z-lLBR)[K(k)-E(k)]}
()
(a1)
where
AS(x) = n[ (R + ar)2 - R2]

volume of exposed portion

Ve
BR
B(5 )= B(o) function defined in equation (60a) and shown in Pigure 1

K(k) = complete elliptic integral of first kind of modulus k
E(k) = complete elliptic integral of second kind of modulus k
X2 _ x(1 - x)

(x+2BR)(1 - x+2FR)

Examples of optimum bodies for a few values of the parameter BR/Z are
shown in figures 2 and 3.
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The pressure coefficient on the body is
P - Pg
=T

= -0

Uo
.3 Ve X
2% 14,3(%>
h(x+28R) (1~x+28R)E-[ 2 (1+4pR) -k (142pR) ( 1-x+28R) 1K+k(1+2BR) (1-2x)1(c?, k)
N(x + 28R) (1 - x + 2BR)

(a2)

where I(e2,k) is a complete elliptic integral of third kind of modulus
k and parsmeter o (in the notation of ref. 20). The parameter o2
1ls given by

2 X
1 -x+2BR

Sketch (Ab) shows some plots of Cp/(Ve/13) versus x/1 for a few values of
the parameter BR/1.

-160 /l,_____\
-8.0 / // \*\
/ |
0 / A/L//’ \
Ve
s.0L——] o BR.L
1 / - T&
16.0 45
24.0 /
320
WO =2 3 4 5 6 T 8 98 10

x/1
Sketch (Ab)
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The wave drag of this optimum body is glven by

2
%=3:£Z—<'%5 (43)

The variation of drag with PR/1 is shown in figures 2 and 3.

The Optimum Body of Given Csaliber

The varistion of AS for the optimum body of glven caliber is

2 2s(2)
25(x) = % T (1+4BR) |

1(242BR) (1+48R)TI(a?,k) - ( 1-2x) (x+2BR) ( 1-x+2BR) E-1( 1+2BR) ( 1-x+2BR)K
N(x +28R) (1 - x + 28R)

(ak)

where the symbols have been defined sbove. Examples of optimum bodies for
a few values of the parameter ﬁR/Z are shown in figure L.

The pressure coefficient on the body is given by

op = 8 AS(1) 1+ 28R o(e®,k) -K
7 3 34+ U4BR N (x+2BR) (1 - x + 2BR)

(45)
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c

Sketch (Ac) shows some plots of AS——-(———I;/Z versus x/1 for several
1}/
values of the parameter BR/1.
-3.2
-6 //
c ] —1 |
. —
as/ | ] [ oaBR.L
|.6/ / 1 5
// I 'TIO_
32 -'3"6
48 - ' — -
0 d .2 3 4 5 .6 7 .8 9 1.0
x/1
Sketeh (Ac)
The drag of this body is
D b [as(1)1®
Q5 TC(Z + )-I-BR) 1

and its variation with BR/1 is shown in figure L.
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Figure 2.- Geometry and drag characteristics of optimum bodies of equal volume,
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Figure L4.- Geometry end drag characteristics of optimum bodies of given caliber.
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